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Abstract – We are developing onboard processor technology 
targeted at the L-band SAR instrument onboard the 
planned DESDynI mission to enable formation of SAR 
images onboard opening possibilities for near-real-time data 
products to augment full data streams.  Several image 
processing and/or interpretation techniques are being 
explored as possible direct-broadcast products for use by 
agencies in need of low-latency data, responsible for disaster 
mitigation and assessment, resource management, 
agricultural development, shipping, etc.  Data collected 
through UAVSAR (L-band) serves as surrogate to the future 
DESDynI instrument.  We have explored surface water 
extent as a tool for flooding response, and disturbance 
images on polarimetric backscatter of repeat pass imagery 
potentially useful for structural collapse (earthquake), 
mud/land/debris-slides etc.  We have also explored building 
vegetation and snow/ice classifiers, via support vector 
machines utilizing quad-pol backscatter, cross-pol phase, 
and a number of derivatives (radar vegetation index, 
dielectric estimates, etc.).  We share our qualitative and 
quantitative results thus far.  
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1. INTRODUCTION 

The planned Deformation, Ecosystem Structure and Dynamics 
of Ice (DESDynI) mission would collect an enormous amount of 
data using a repeat pass Interferometric Synthetic Aperture 
Radar operating at 1.2 GHz (L-Band) and full polarimetric 
mode, generating images of resolution better then 10m pixels 
over swaths 240km in range (Desdyni 2011).  For many years to 
come this data should prove valuable to scientific research with 
respect in areas improving our understanding of earthquakes, 
volcanic activity, landslides, dynamics of ice-sheets in our 
rapidly changing environment and how our climate is 
interrelated with terrestrial biomass.  In the short term, these 
same data could have immediate utility for disaster 
management, resource management, and other agencies working 
within time restrictions and data-processing limitations.  For 
example an invaluable tool for emergency responders in a flood 
situation would be a surface water extent map.  

As an associated piece of this work, JPL has developed a 
hardware approach for processing raw polarimetric L-band SAR 
data based on Xilinx Virtex series FPGA (Lou 2010).  This has 
been deployed on the Uninhabited Aerial Vehicle Synthetic 
Aperture Radar (UAVSAR), an airborne radar system typically 
flying at altitudes of ~14000 meters along a computer controlled 
flight tube of 10m diameter while electronically steering a L-
band  radar, generating images of nearly 2m resolution before 

multilooking (UAVSAR 2010).   The hardware processor is 
designed to be compatible with both UAVSAR and the radar 
proposed in DESDynI, allowing SAR image formation of 10m 
resolution in near-real-time, and subsequent analysis on those 
data.  

We have identified several applications areas to explore data 
processing and classification results under conditions feasible 
for a space-born platform: surface water extent mapping for 
flood applications, coarse vegetation classification for resource 
management and/or fire monitoring, snow/ice/land classification 
for transportation management or water resource management 
and finally repeat-pass disturbance processing for landslide 
mitigation and monitoring.   

In each of these applications latency between data acquisition 
and delivery, and actual coverage of region-of-interest are of the 
utmost important to the end-user.  DESDynI’s future mission 
would be downlink constrained; onboard processing could 
condense these data through image formation and classification, 
allowing for urgent and last minute requests that would 
otherwise not fit in the schedule. Onboard processing coupled 
with direct-broadcast could further alleviate latency. 

2.1 REPEAT PASS DISTURBANCE DETECTION 

Our first and possibly simplest product presented here is a 
simple composite of radar backscatter returned between two 
scenes on a 0-baseline. This is intended as a tool for an expert 
familiar with radar signatures to identify expanses of disturbance 
or change over the temporal baseline.   

UAVSAR collected data along the San Gabriel Mountain range 
both in February 2009 and September 2009 using the same flight 
path to within 10 meters accuracy, covering portions of the 
Angeles National Forest which suffered the 160,000 acre fire 
from late August 2009 through October 2009, costing $95 
million in containment (USDA 2009).  In Figure 1 backscatter 
image data from the initial flight has been used to color red 
intensity, while blue/green used to color the later flight.  Figure 
2 shows the same data, but with differences of 3dB or more 
highlighted red/green for vegetated/non-veg areas (prior to 
burn).  Figure 3 shows a burn scar image generated from 
ASTER data acquired September 6th, 2009, with an approximate 
outline of the UAVSAR data product (Allen 2009).   
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